Skip to content

2.2 Specialized Tools in the SDLC

flowchart LR
    subgraph Plan["📋 Planning"]
        A1[Requirements] --> A2[AI generates
user stories] end subgraph Code["💻 Development"] B1[Write Code] --> B2[Copilot assists] B2 --> B3[AI reviews PR] end subgraph Test["🧪 Testing"] C1[Generate tests] --> C2[AI finds bugs] C2 --> C3[Visual testing] end subgraph Deploy["🚀 Deployment"] D1[Security scan] --> D2[Performance check] D2 --> D3[Auto-docs] end subgraph Monitor["📊 Monitor"] E1[Log analysis] --> E2[AI detects
anomalies] end Plan --> Code --> Test --> Deploy --> Monitor Monitor -.->|Feedback| Plan style Plan fill:#e1f5ff style Code fill:#fff4e1 style Test fill:#ffe1f5 style Deploy fill:#e1ffe1 style Monitor fill:#f5e1ff

Key Points to Cover:

  • Code Analysis Tools
  • AI-powered static code analysis
  • Code quality metrics and recommendations
  • Technical debt identification
  • Examples: DeepCode, Codacy AI features, Amazon CodeGuru

  • Security-Focused AI Tools

  • Vulnerability detection and prevention
  • Security pattern recognition
  • Automated security code reviews
  • Examples: Snyk, GitHub Advanced Security, Checkmarx
  • SAST (Static Application Security Testing) enhancements

  • Automated Testing Tools

  • AI-driven test generation
  • Test case prioritization
  • Flaky test detection
  • Visual testing and UI validation
  • Examples: Testim, Applitools, Mabl

  • Code Review Automation

  • AI-assisted pull request reviews
  • Consistency checking
  • Best practice enforcement
  • Examples: CodeRabbit, Codium AI

  • Documentation Tools

  • Automatic documentation generation
  • API documentation from code
  • Keeping docs in sync with code
  • Examples: Mintlify, Swimm

  • Performance and Optimization

  • AI-driven performance profiling
  • Bottleneck identification
  • Optimization suggestions

  • Integration in CI/CD Pipelines

  • Incorporating AI tools into build processes
  • Automated quality gates
  • Continuous feedback loops

  • Tool Selection Criteria

  • Team size and needs
  • Language and framework support
  • Cost-benefit analysis
  • Privacy and data security considerations