3.1 Level 1: The Fundamentals of LLM APIs
π€ OLD vs. NEW Apps with LLM
π± Evolution of Apps
graph LR
subgraph "π°οΈ OLD APPS"
A1[π± Frontend] --> A2[π§ Backend] --> A3[πΎ Database]
A2 --> A4[π Analytics]
end
style A1 fill:#ffebee
style A2 fill:#ffebee
style A3 fill:#ffebee
style A4 fill:#ffebee
graph LR
subgraph "π GENAI APPS"
B1[π± Frontend] --> B2[π§ Backend] --> B3[πΎ Database]
B2 --> B4[π Analytics]
B2 --> B5[π€ LLM Endpoint
β¨ GenAI Magic]
end
style B1 fill:#e8f5e8
style B2 fill:#e8f5e8
style B3 fill:#e8f5e8
style B4 fill:#e8f5e8
style B5 fill:#fff3e0
Key Points to Cover:
Overview of LLM API Providers
- Major Platforms
- OpenAI API (GPT-4, GPT-3.5, etc.)
- Google AI Platform (Gemini)
- Anthropic (Claude)
- Azure OpenAI Service
- AWS Bedrock
- Open-source alternatives (Hugging Face, Ollama)
graph TD
You[π€ LLM Endpoint
β¨ GenAI Magic] --> |Choose your fighter!| Decision{Which API?}
Decision -->|"Need GPT-4"| OpenAI[OpenAI π’
Pro: Most popular
Con: $$$]
Decision -->|"Long context"| Claude[Claude π΅
Pro: 200k tokens!
Con: Newer]
Decision -->|"Google ecosystem"| Gemini[Gemini π΄
Pro: Multimodal
Con: Evolving]
Decision -->|"Enterprise ready"| Azure[Azure OpenAI π¦
Pro: Compliance
Con: Complex setup]
Decision -->|"Open source fan"| OSS[Hugging Face π€
Pro: Free & flexible
Con: Self-hosted]
style OpenAI fill:#90EE90
style Claude fill:#ADD8E6
style Gemini fill:#FFB6C1
style Azure fill:#B0C4DE
style OSS fill:#FFD700
- Comparison Criteria
- Pricing models
- Rate limits and quotas
- Model capabilities and specializations
- Latency and performance
- Data privacy policies
API Basics
- Authentication and Setup
- API keys and security
- Environment configuration
-
SDK installation
-
Core API Concepts
- Requests and responses
- Message format (system, user, assistant)
- Tokens and token counting
- Temperature and sampling parameters
-
Max tokens and response length
-
Key Parameters Explained
- Temperature (creativity vs. consistency)
- Top-p (nucleus sampling)
- Frequency and presence penalties
- Stop sequences
- Streaming vs. batch responses
graph LR
A[Your Prompt] --> B{Temperature Setting}
B -->|0.0 - 0.3| C[π€ Robot Mode
Very predictable
Same output every time
Good for: Code, facts]
B -->|0.4 - 0.7| D[π Balanced Professional
Reliable but varied
Good for: Most tasks]
B -->|0.8 - 1.0| E[π¨ Creative Genius
Wild & unpredictable
Good for: Stories, ideas]
B -->|1.5 - 2.0| F[πͺοΈ Chaos Mode
Random word salad
Good for: Entertainment]
style C fill:#e3f2fd
style D fill:#fff9c4
style E fill:#f3e5f5
style F fill:#ffccbc
Live Coding Demo
- Simple Application Example (Python)
- Setting up the environment
- Making first API call
- Parsing and displaying results
-
Error handling
-
Practical Use Cases
- Text summarization
- Code generation from description
- Language translation
- Sentiment analysis
- Q&A system
Best Practices
- Cost Management
- Monitoring token usage
- Caching strategies
-
Prompt optimization for efficiency
-
Error Handling
- Rate limit handling
- Retry logic with exponential backoff
- Timeout management
-
Fallback strategies
-
Security Considerations
- Protecting API keys
- Input sanitization
- Output validation
- PII handling
Hands-On Exercise Ideas
- Build a simple chatbot
- Create a code documentation generator
- Implement a text classification service
- Design a custom code assistant for specific framework